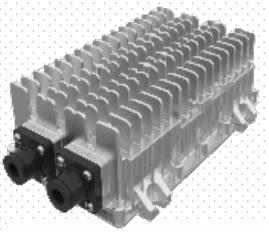


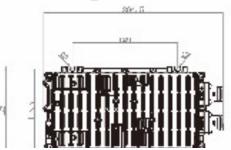
Quality

Pricing

Service


Beijing V.TurfPro International Trading Company

CHARGER BROCHURE



VWT300W SERIES ON-BOARD SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can be used to cycle or float charging the battery pack in electric scooter, forklifts, golf cart, patrol vehicle, scrubber, boat, etc.

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT12XX	12V	17V	12A
VWT24XX	24V	34V	10A
VWT36XX	36V	51V	7A
VWT48XX	48V	68V	5A
VWT60XX	60V	85V	5A

TECHNOLOGY PARAMETERS

- AC Input Voltage Range:85~270VAC;50/60Hz
- AC Input Max Current: 3.3A @120VAC;1.5A @220VAC
- Power Factor:≥0.99
- Efficiency:≥MAX 90.0%
- No Noise
- Protection level:IP67

PRODUCT CHARACTERISTICS SAFETY

Active PFC and LLC technique is applied for a rapid response on fault; Active software and reliable passive hardware selfprotection on voltage¤t; Advanced charging strategy is integrated safeguard for the battery system.

PROTECTION FEATURES

- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down the power load. If environment temperature exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries:
 The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is short-circuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

DELLABILITY

• The shell is shaped by an integrated die casting technique and filled with special glue. This series of chargers had been operated in all kinds of the industrial environment (Wet, Hot, Cold, high altitude) for more than ten years.

FUNCTIONS

Triple Colors Indicator and Vehicle Charging Lock System are compatible. Built-in charging curves that can be changed by remote controller.

SIZE AND WEIGHT & TEMPERATURE

- Net Weight:1.2kg
- Operating Temperature:-30°C~65°C
- Storage Temperature:-40°C~95°C

VWT450W SERIES ON-BOARD SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can be used to cycle or float charging the battery pack in electric scooter, forklifts, golf cart, patrol vehicle, scrubber, boat, etc.

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT24XX	24V	33V	15A
VWT36XX	36V	49V	10A
VWT48XX	48V	66V	8A
VWT60XX	60V	84V	6A
VWT72XX	72V	100V	5A

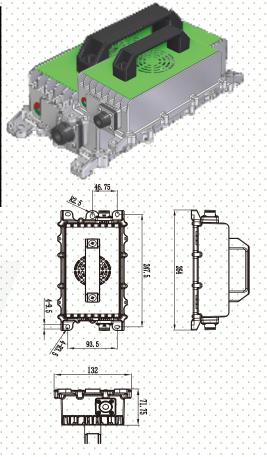
- AC Input Voltage Range: 100~240VAC;50/60Hz
- AC Input Max Current: 4.5A @120VAC;
- Power Factor:≥0.99;
- Efficiency:≥MAX 90.0%;
- Noise ≤45dB:
- Protection level:IP67

PRODUCT CHARACTERISTICS

SAFETY

 Active PFC and LLC technique is applied for a rapid response on fault; Reliable software and hardware protection, UL/CB/CE/KC/RSM/FCC/KCC/CEC/DOE/CA65 electrical approvals.

RELIABILITY

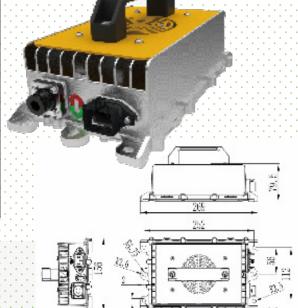

The shell is shaped by an integrated die casting technique and filled with special glue. This series of chargers had been operated in all kinds of the industrial environment (Wet, Hot, Cold, high altitude) for more than ten years.

FUNCTIONS

 Can-bus, Bluetooth, External Indicator, Charging Interlock, Auxiliary Power 12V03A..

SIZE AND WEIGHT & TEMPERATURE

- Net Weight:1.2kg
- Operating Temperature: -30°C~65°C
- Storage Temperature: -40°C~95°C



- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down the power load. If environment temperature exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries:
 The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is short-circuited:
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

VWT720W SERIES SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CA batteries and can be used to cycle or float charging the battery pack in electric scooter, forklifts, golf cart, patrol vehicle, scrubber, boat, etc...

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT12XX	12V	17V	30A
VWT24XX	24V	34V	30A
VWT36XX	36V	51V	20A
VWT48XX	48V	68V	15A
VWT60XX	60V	85V	12A
VWT72XX	72V	102V	10A

TECHNOLOGY PARAMETERS

- AC Input Voltage Range: 85~270VAC; 50/60Hz
- AC Input Max Current: 8.5A @120VAC 7 3.6A @220VAC
- Power Factor:≥0.99
- Efficiency:≥MAX 91.0%
- Noise:≤45dB
- Protection level:IP67

PROTECTION FEATURES

- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down. CEC, California Proposition 65 certificate. the power load. If environment temperature exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries: The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is shortcircuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

PRODUCT CHARACTERISTICS **SAFETY**

 Active PFC and LLC techniques are applied for a quick response on a fault; Active software and reliable passive hardware self-protection on voltage¤t; Advanced charging strategy is integrated as a safeguard for the battery system. Products can fully satisfy UL1012, CSA107.2, FCC Part15

RELIABI

Shell is shaped by an integrated die casting technique and filled with special glue. The active cooling fan is also designed with a potting structure for longer life. Series of chargers had been operating in all kinds of the industrial environment (Wet, Hot, Cold, high altitude) for more than ten years for verification...

FUNCTION

- Triple Colors Indicator and Vehicle Charging Lock System are compatible. Built-in charging curves can be changed by remote controllers (Infrared Controller).
- SIZE AND W
- Net Weight:2.5kg
- Operating Temperature:-35°C~65°C
- Storage Temperature: -40°C~95°C

VWT750W SERIES ON-BOARD SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can be used to cycle or float charging the battery pack in electric scooters, forklifts, golf cart, patrol vehicle, scrubber, boat, etc.

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT12XX	12V	17V	20A
VWT24XX	24V	34V	20A
VWT36XX	36V	51V	15A
VWT48XX	48V	68V	15A
VWT60XX	60V	85V	12A

■ TECHNOLOGY PARAMETERS

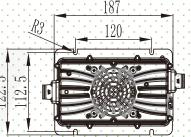
- AC Input Voltage Range: 85~270VAC; 50/60Hz
- AC Input Max Current: 5.0A @120VAC; 4.0A @220VAC
- Power Factor:≥0.99
- Efficiency:≥MAX 92.0%
- Noise:≤45dB
- Protection level:IP67

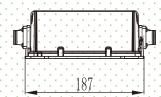
■ PRODUCT CHARACTERISTICS

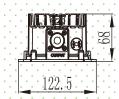
SAFETY

• Active PFC and LLC technique is applied for a rapid response on a fault; Quick active software and reliable passive hardware self-protection on voltage¤t; Advanced charging strategy is adopted as a safeguard to the battery system.

RFLIABILITY


The shell is shaped by an integrated die casting technique and filled with special glue. Then potting structure is used for the active cooling fan to achieve efficiency and durability. Chargers had been operating in all kinds of the industrial environment (wet, hot, cold, high altitude) for more than ten years and can pass various verification.


FUNCTIONS


CAN BUS Interface, Triple Colors Indicator, and Vehicle Charging Lock System are compatible.

SIZE AND WEIGHT& HEMPERATURE

- Net Weight:1.2kg
- Operating Temperature:-30°C~65°C
- Storage Temperature: -40°C~95°C

- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down the power load. If temperature of environment exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries:
 The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the batteries are not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is short-circuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

VWT900W SERIES SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can be used to cycle or float charging the battery pack in electric scooters, forklifts, golf cart, patrol vehicle, scrubber, boat, etc.

		1,1,1,1,1,1	. 1. 1. 1.	121212	100	ď,
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1000000	. 1. 1. 1. 1.	1000	1000	т,
∳ 1111			. 1 . 1 . 1 .	1000	1000	. 1
			40.00			
		\mathcal{T}				1
<u> </u>		الله الله			100	
		111 I Pm			1.1.1	
· · · · O練聞 ·		4 - 	40.00			4
	<u></u>				. 1. 1.	10
· <u>! · </u> #Ш#=	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				40.0	
	991	1.1.1.1.1.1				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			7· · ·			4
10			, <u>/</u>			٠.
· 10 · -					3.0	
<u> </u>		300	1 1 1 6	5 0.	100	ď.
	Total Control of the		. • A · . • §		1	
					7	
		34	1.1.1.1		N	٠,١
			ااف		V≠	₹.
			\simeq		₹I L	ŀ
	1000000	and the			-	٠.
	383		1.1.1.1	NO7 3 =	모	
		- 1	. i <u>T</u> i ø		- P	ď.
— • • • • • • • • • • • • • • • • • • •		⊸ • • • • • • • • • • • • • • • • • • •	. • y • . • £			. 1
10101010				F	100	1
and the second second	204. 5		and the second	The second second	100	
	20/1 5					'

PROTECTION FEATURES

- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down the power load. If environment temperature exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries:
 The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is short-circuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT24XX	24V	34V	30A
VWT36XX	36V	51V	25A
VWT48XX	48V	68V	25A

TECHNOLOGY PARAMETERS

- AC Input Voltage Range: 85~270VAC;50/60Hz
- AC Input Max Current: 9.8A @120VAC;4.5A @220VAC
- Power Factor:≥0.99
- Efficiency:≥MAX 92.0%
- Noise:≤45dB
- Protection level:IP67

PRODUCT CHARACTERISTICS

SAFETY

• Active PFC and LLC technique is used for a rapid response on a fault; Quick active software and passive hardware protection on voltage¤t; Advanced charging strategy is applied as a safeguard for the battery.

RELIABILITY

The shell is shaped by the integrated die casting technique and filled with special glue. The active cooling fan is also designed with a potting structure for longer life. Chargers had been operating in all kinds of the industrial environment (wet, hot, cold, high altitude) for more than ten years, and are proved to pass verification.

FUNCTIONS

 External three-color indicator; Charge&Lock system(vehicle power system can be locked by relay contacts during the charging process); Five charging curves are available to choose from an infrared remote controller.

SIZE AND WEIGHT & TEMPERATURE

- Net Weight: 2.0kg
- Operating Temperature:-30°C~65°C
- Storage Temperature:-40°C~95°C

VWT1200W SERIES SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can apply to cycle or float charging of battery pack in electric motorcycle, forklifts, golf cart, patrol vehicle, scrubber, boat, etc.

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT36XX	36V	51V	25A
VWT48XX	48V	68V	25A
VWT60XX	60V	85V	20A
VWT72XX	72V	102V	17A

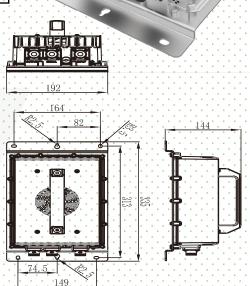
- AC Input Voltage Range:85~270VAC;50/60Hz
- AC Input Max Current:12.0A @120VAC;6.1A @220VAC
- Power Factor:≥0.99
- Efficiency:≥MAX 91.0%
- Noise:≤45dB
- Protection level:IP67

PRODUCT CHARACTERISTICS

SAFETY

Active PFC and LLC; Reliable hardware and voltage ¤t self-test protection; Perfect charging strategy to ensure safety in the charging process; Chargers can fully satisfy UL1012, C22.2 #107.2, FCC,CEC,CF65,KC requirements.

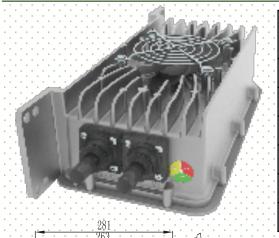
RELIABILITY

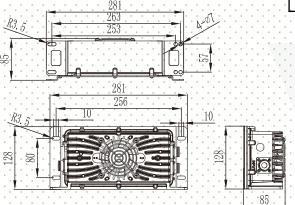

The shell is shaped by the integrated die casting technique and filled with special glue. The active cooling fan is also designed with a potting structure for longer life. Chargers had been operating in all kinds of the industrial environment (Wet, Hot, Cold, Dust) and are proved to pass the verification.

FUNCTIONS

- CAN BUS Interface;
- Triple Colors Indicator;
- Vehicle Charging Lock System;
- Auxiliary power supply for 12V;

SIZ AND WEIGHT & EMPERATURE


- Net Weight:2.8kg
- Operating Temperature:-30°C~65°C
- Storage Temperature:-40°C~95°C



- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down the power load. If temperature of environment exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries:
 The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is short-circuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

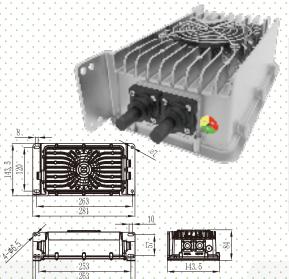
VWT1350W SERIES ON-BOARD SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can be used to cycle or float charging the battery pack in electric scooters, forklifts, golf cart, patrol vehicle, scrubber, boat, etc...

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT12XX	12V	17V	25A
VWT24XX	24V	34V	25A
VWT36XX	36V	51V	25A
VWT48XX	48V	68V	25A
VWT60XX	60V	85V	20A
VWT72XX	72V	102V	18A

TECHNOLOGY PARAMETERS

- AC Input Voltage Range: 180~270VAC; 50/60Hz
- AC Input Max Current: 7.3A @220VAC
- Power Factor:≥0.99
- Efficiency:≥MAX 93.0%
- Noise:≤45dB
- Protection level: IP67
- PRODUCT CHARACTERISTICS **SAFETY**
- Active PFC and LLC technique is applied for a rapid respond. on a fault; Quick active software and reliable passive hardware self-protection on voltage¤t; Advanced charging strategy is integrated as a safeguard for battery.


The shell is shaped by integrated die casting technique, and filled with special glue. The active cooling fan is also designed Protection for Reverse Connection of Batteries: with a potting structure for longer life. Chargers had been operating in all kinds of industrial environment (wet, hot, cold, high altitude) for more than ten years and is proved to pass the verification.

- CAN BUS Interface, Triple Colors Indicator, Interlock System, Auxiliary power supply for 12V.
- SIZE AND W
- Net Weight:2.0kg
- Operating Temperature:-30°C~65°C
- Storage Temperature: 40°C~95°C

- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down the power load. If environment temperature exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is shortcircuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

VWT1500W SERIES ON-BOARD SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CA batteries and can be used to cycle or float charging the battery pack in electric scooter, forklifts, golf cart, patrol vehicle, scrubber, boat, etc.

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT24XX	24V	36V	30A
VWT36XX	36V	51V	30A
VWT48XX	48V	68V	30A
VWT60XX	60V	85V	20A
VWT72XX	72V	102V	20A

■ TECHNOLOGY PARAMETERS

- AC Input Voltage Range:180~270VAC; 50/60Hz
- AC Input Max Current: 8.0A @220VAC
- Power Factor:≥0.99
- Efficiency:≥MAX 93.0%
- Noise:≤45dB
- Protection level:IP67

PROTECTION FEATURES

- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down the power load. If environment temperature exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries:
 The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is short-circuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

PRODUCT CHARACTERISTICS

SAFETY

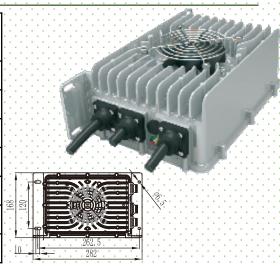
Active PFC and LLC technique is used for a rapid response on a fault; Quick active software and passive hardware protection on voltage¤t; Advanced charging strategy is applied as a safeguard for the battery.

RELIABILITY

The shell is shaped by the integrated die casting technique and filled with special glue. The active cooling fan is also designed with a potting structure for longer life. Chargers had been operating in all kinds of the industrial environment (wet, hot, cold, high altitude) for more than ten years, and are proved to pass verification.

FUNCTIONS

- CAN BUS Interface:
- Triple Colors Indicator;
- Charging Interlock System;
- 12V Auxiliary power supply;


■ SIZE AND WEIGHT&TEMPERATURE

- Net Weight:2.8kg
- Operating Temperature: -30°C~65°C
- Storage Temperature:-40°C~95°C

VWT2000W SERIES ON-BOARD SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can be used to cycle or float charging the battery pack in electric scooters, forklifts, golf cart, patrol vehicle, scrubber, boat, etc...

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT24XX	24V	34V	50A
VWT36XX	36V	51V	35A
VWT48XX	48V	68V	35A
VWT60XX	60V	85V	30A
VWT64XX	64V	91V	25A
VWT72XX	72V	102V	25A
VWT80XX	80V	113V	22A

TECHNOLOGY PARAMETERS

- AC Input Voltage Range: 85~270VAC ; 50/60Hz
- AC Input Max Current: 11.5A @120VAC; 11.0A @220VAC
- Power Factor:≥0.99
- Efficiency:≥MAX 93.0%
- Noise:≤45dB
- Protection level:IP67

PROTECTION FEATURES

- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down the power load. If temperature of environment exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries: The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is shortcircuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

PRODUCT CHARACTERISTICS

256.5

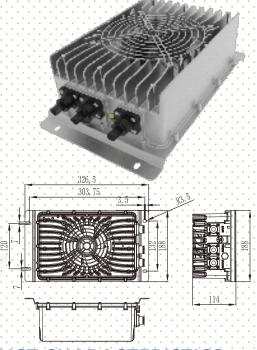
Active PFC and LLC technique is applied for a rapid response on fault; Active software and reliable passive hardware self-protection on voltage¤t; Advanced charging strategy is integrated as a safeguard for the battery system.

The shell is shaped by an integrated die casting technique and filled with special glue. This series of chargers had been operated in all kinds of the industrial environment (Wet, Hot, Cold, high altitude) for more than ten years to pass verification.

FUNCT

- CAN BUS Interface;
- Triple Colors Indicator;
- Charging Interlock System;
- Auxiliary power supply for 12V

SIZE AN


- Net Weight:3.5kg
- Operating Temperature:-30°C~65°C
- Storage Temperature:-40°C~95°C

ATURE

VWT3300W SERIES ON-BOARD SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can apply to cycle or float charging of battery pack in electric scooters, forklifts, golf cart, patrol vehicle, scrubber, boat, etc...

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT48XX	.48V	68V	50A
VWT60XX	60V	85V	35A
VWT72XX	72V	102V	30A
VWT96XX	96V	118V	30A
VWT108XX	108V	128V	28A
VWT144XX	144V	168V	20A
VWT150XX	150V	180V	20A

TECHNOLOGY PARAMETERS

- AC Input Voltage Range: 85~270VAC; 50/60Hz
- AC Input Max Current:14.0A @100VAC; 15.0A @220VAC
- Power Factor:≥0.99
- Efficiency: MAX 93.5%
- Noise:≤45dB
- Protection level:IP67

■ PROTECTION FEATURES

- Burnout Protection: If temperature of charger exceeds the limitation, the charger will low down the power load. If environment temperature exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries:
 The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is short-circuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

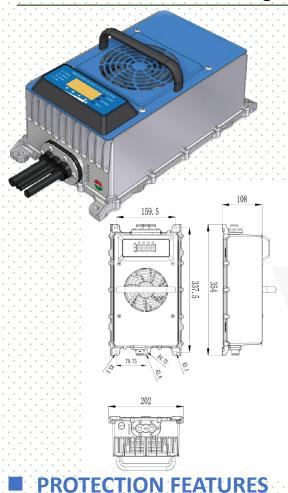
PRODUCT CHARACTERISTICS SAFETY

Active PFC and LLC technique is used for a rapid response on a fault; Quick active software and passive hardware protection on voltage¤t; Advanced charging strategy is applied as a safeguard for the battery.

RELIABILITY

The shell is shaped by an integrated die casting technique and filled with special glue. This series of chargers had been operated in all kinds of the industrial environment (Wet, Hot, Cold, high altitude) for more than ten years to pass verification.

FUNCTIONS


- CAN BUS Interface:
- Triple Colors Indicator;
- Vehicle Charging Lock System;
- Auxiliary power supply for 12V;

■ SIZE AND WEIGHT&TEMPERATURE

- Net Weight:5.8kg
- Operating Temperature:-30°C~65°C
- Storage Temperature:-40°C~95°C

VWT3300W PL SERIES SEAL CHARGER

This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can apply to cycle or float charging of battery pack in electric scooters, forklifts, golf cart, patrol vehicle, scrubber, boat, etc.

Models	Rated Voltage	Max Output	Max Output
ividueis	for Battery Pack	Voltage	Current
VWT24XX	24V	34V	100A
VWT48XX	48V	68V	50A

TECHNOLOGY PARAMETERS

- AC Input Voltage Range: 85-270VAC; 50/60Hz
- AC Input Max Current:14.0A @100VAC; 15.0A @220VAC
- Power Factor:≥0.99
- Efficiency: ≥ MAX 93.5%
- Noise:≤45dB
- Protection level:IP67

PRODUCT CHARACTERISTICS SAFETY

Active PFC and LLC technique is used for a rapid response on a fault; Quick active software and passive hardware protection on voltage¤t; Advanced charging strategy is applied as a safeguard for the battery.

RELIABILITY

The shell is shaped by an integrated die casting technique and filled with special glue. This series of chargers had been operated in all kinds of the industrial environment (Wet, Hot, Cold, high altitude) for more than ten years to pass verification.

exceeds 65 °C, the charger will stop charging and verification

FUNCTIONS

- LED Display Panel
- CAN BUS Interface;
- Triple Colors Indicator;
- Vehicle interlock System;
- 12V Auxiliary power supply;

the batteries are connected reversely. NO-load Protection: There is no output when the battery is not connected.

The circuit inside the charger shuts down when

Protection for Reverse Connection of Batteries:

Burnout Protection: If temperature of charger

exceeds the limitation, the charger will low down

the power load. If environment temperature

switch itself to standby mode until the

temperature goes down.

- Short Circuit Protection: The circuit inside the charger will shut down when output is short-circuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.

SIZE AND WEIGHT TEM

- Net Weight: 5.8kg
- Operating Temperature:-30°C~65°C
- Storage Temperature: -40°C~95°C

VWT5000W SERIES SEAL CHARGER

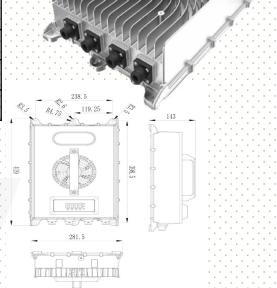
This series of chargers are suitable for lead-acid, lithium, NI-MH, NI-CD batteries and can be used to cycle or float charging the battery pack in electric scooters, forklifts, golf cart, patrol vehicle, scrubber, boat, etc.

Models	Rated Voltage for Battery Pack	Max Output Voltage	Max Output Current
VWT36XX	36V	51V	100A
VWT48XX	48V	68V	80A
VWT60XX	60V	85V	60A
VWT72XX	72V	102V	60A
VWT80XX	80V	113V	50A

- Phase:three-phase three-Line+PE line
- AC Input Voltage: Line Voltage 260~457VAC;50Hz
- AC Input Max Current:9.0A @380VAC
- Power Factor:≥0.95
- Efficiency:≥90.0%
- CNoise:≤45dB
- Protection level:IP67

PRODUCT CHARACTERISTICS SAFETY

 All digital active PFC and LLC technique is applied for a rapid response on a fault; Quick active software and passive hardware self-protection on voltage¤t; Advanced charging strategy is integrated as a safeguard for the battery system.


RELIABILITY

The shell is shaped by the integrated die casting technique and filled with special glue.

The active cooling fan is also designed with a potting structure for longer life. Chargers had been operating in all kinds of the industrial environment (wet, hot, cold, high altitude) for more than ten years, and are proved to pass verification.

FUNCTIONS

- LED Display Panel, CAN BUS Interface,
 Triple Colors Indicator & Vehicle Interlock System.
- 12V Auxiliary power supply.
- Built-in Bluetooth with Apps controls to configure parameters and changing curves easily.
- Optional:Timed charging&Overcharging Protection (Short-circuit Guard)for lead-acid battery.

SIZE AND WEIGHT&TEMPERATURE

Net Weight:18kg

- Operating Temperature:-30°C~65°C
- Storage Temperature:-40°C~95°C

- Burnout Protection: If temperatures of charger exceed the limitation, the charger will low down the power load. If environmental temperatures exceeds 65 °C, the charger will stop charging and switch itself to standby mode until the temperature goes down.
- Protection for Reverse Connection of Batteries:
 The circuit inside the charger shuts down when the batteries are connected reversely.
- NO-load Protection: There is no output when the battery is not connected.
- Short Circuit Protection: The circuit inside the charger will shut down when output is shortcircuited.
- Automatic shutdown when fully charged: The charger automatically turns off after the battery is fully charged.